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A B S T R A C T

The blink reflex (BR) is a protective eye-closure reflex mediated by brainstem circuits. The BR is usually evoked
by electrical supraorbital nerve stimulation but can be elicited by a variety of sensory modalities. It has a long
history in clinical neurophysiology practice. Less is known, however, about the many ways to modulate the BR.
Various neurophysiological techniques can be applied to examine different aspects of afferent and efferent BR
modulation. In this line, classical conditioning, prepulse and paired-pulse stimulation, and BR elicitation by self-
stimulation may serve to investigate various aspects of brainstem connectivity. The BR may be used as a tool to
quantify top-down modulation based on implicit assessment of the value of blinking in a given situation, e.g., de-
pending on changes in stimulus location and probability of occurrence. Understanding the role of non-
nociceptive and nociceptive fibers in eliciting a BR is important to get insight into the underlying neural cir-
cuitry. Finally, the use of BRs and other brainstem reflexes under general anesthesia may help to advance our
knowledge of the brainstem in areas not amenable in awake intact humans. This review summarizes talks held by
the Brainstem Special Interest Group of the International Federation of Clinical Neurophysiology at the Interna-
tional Congress of Clinical Neurophysiology 2022 in Geneva, Switzerland, and provides a state-of-the-art
overview of the physiology of BR modulation. Understanding the principles of BR modulation is fundamental for
a valid and thoughtful clinical application (reviewed in part 2) (Gunduz et al., submitted).

© 20XX

1. Introduction

The blink reflex (BR) is a protective eye-closure reflex mediated by
brainstem circuits and triggered by fast-rising and intense stimuli from
a variety of sensory modalities. Fig. 1 summarizes the various ways to
elicit the BR in clinical practice and research. The most conventional
way of BR elicitation is the application of electrical stimuli to the supra-
orbital nerve (SON), a terminal branch of the first division of the
trigeminal nerve, typically in the forehead. Most commonly, stimulus
intensity is about 10 times sensory threshold, and the interstimulus in-
terval (ISI) between two consecutive single stimuli should not be less
than 10 seconds to avoid habituation. Sensory afferents of the SON pro-
ject to the principal sensory nucleus (PSN) and the spinal trigeminal nu-
cleus (STN) in the brainstem. From there, fibers take an oligosynaptic
route to the ipsilateral facial nucleus through the pons, and a polysy-
naptic route to both ipsi- and contralateral facial nuclei via the pon-

tomedullary reticular formation (Fig. 1). BRs consist of orbicularis oculi
muscle (OOc) contraction and levator palpebrae muscle relaxation to
allow for lowering of the upper eyelid (Esteban, 1999; Aramideh and
Ongerboer de Visser, 2002). However, response analysis is usually lim-
ited to the electromyographic (EMG) activity picked up with surface
electrodes from the OOc. There are many ways to elicit and to modulate
a BR, and each has its history. This two-part review aims to provide an
up-to-date summary of the various approaches to elicit and modulate
the BR in health and disease.

2. History of the blink reflex and its modulation (Markus Kofler)

2.1. Initial studies applying mechanical stimuli

The first description of the BR dates back to 1896, when Walker Ov-
erend’s observations were published in the Lancet (Overend, 1896). He
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Fig. 1. Simplified scheme of the blink reflex circuitry with the pontomedullary reticular formation as the central brainstem structure mediating all kinds of blink
reflexes in response to various afferent modalities. CN = cochlear nuclei; PSN = principal sensory nucleus of the trigeminal nerve; STN = spinal trigeminal nu-
cleus of the trigeminal nerve; VN = vestibular nuclei. Note that the early R1 response following supraorbital nerve (SON) stimulation is mediated via the PSN,
connecting only with the ipsilateral facial nucleus, whereas the late responses are conveyed via the ipsilateral STN to the pontomedullary reticular formation from
where ipsi- (R2) and contralateral (R2c) responses are generated. Blink reflexes evoked by other sensory modalities lack the ipsilateral R1 component. The reticu-
lar formation is a complex neuronal network containing numerous diffuse and highly organized regions (Crossman, 2005; Brodal, 2004c). Hence, only the main
pathways are shown. Various afferents comprise the trigeminal nerve, in particular the SON (see section 2, Hopf, 1994; Pellegrini et al., 1995; Berardelli et al.,
1999; Esteban, 1999; Aramideh and Ongerboer de Visser, 2002; Cruccu et al., 2005; Valls-Solé, 2012, 2019; Kimura, 2013), but also other branches of the trigemi-
nal nerve (Kugelberg, 1952; Oka et al., 1958; Gandiglio and Fra, 1967; Kimura, 1973; Hess et al., 1984; Jääskeläinen, 1995; Valls-Solé et al., 1996; Pavesi et al.,
1996). Extratrigeminal sensory afferents have been demonstrated by Gandiglio and Fra (1967), Miwa et al. (1995, 1996, 1998), and Alvarez-Blanco et al. (2009).
Visual input is relayed via retinotectal and tectoreticular fibers (Crossman, 2005). Cochlear and vestibular afferents are described in Brodal’s chapters 8 and 9, re-
spectively (Brodal, 2004a, 2004b) and in Gray’s Anatomy (Crossman, 2005). The pathway of the auditory blink reflex is depicted according to Hori et al. (1986),
not showing the involvement of the colliculus inferior. The majority of trigeminal pain fibers, but not all, are transmitted through the STN (see section 7 for de-
tails).

noted: “When the skin of one-half of the forehead is gently tapped with the
edge of an ordinary wooden stethoscope a twitch in the lower eyelid of the
same side may be observed… If the percussion be made a little stronger the
upper portion of the orbicularis also takes part in the response, while severe
percussion elicits in addition a simultaneous movement of the opposite lids.”
He was the first to describe what we now call the glabella reflex: “Slight
tapping in the middle line of the forehead is followed by twitchings on both
sides. In many instances, however, and particularly after some amount of ed-
ucation or when the skin of the forehead is abnormally sensitive, gentle
stroking alone is sufficient to evoke the reaction.” He observed conditions
with increased reflex excitability, suspected “a true skin reflex”, and
noted: “The motor path is identical with that of the conjunctival reflex; the
sensory channels lie in the supratrochlear and supra-orbital divisions of the
frontal nerve, while the centre is probably located in the mid-brain.” He
even described absence of the response in “hemianaesthesia” but not in
“hemiplegia”. All these observations are still valid to date.

In subsequent years, facial reflexes were clinically described under
many different names according to the area tapped, the muscles re-
sponding, and the mechanism considered to be responsible. The BR was
independently “rediscovered” and reported (McCarthy, 1901, 1902b;
Hudovernig, 1901, Editorial 1901; Bechterew, 1901, 1902; Overend,
1902; Weisenburg, 1903; Zeri, 1906), as later reviewed by others (Fine
et al., 1992; Pearce, 2008).

While first postulating a “true skin reflex” (Overend, 1896), Overend
later suggested additional contributions from “periosteal terminal twigs

… of all the branches of the ophthalmic nerve” (Overend, 1902), in line
with an earlier proposal by Bechterew (1901, 1902). McCarthy (1901)
suggested a “pure nerve reflex” identical to tendon reflexes but noted
later that warm and cold stimuli applied to the skin in the distribution
of the SON were also capable of eliciting the reflex, thus refuting a pe-
riosteal reflex generation (McCarthy, 1902a). Other suggestions in-
cluded “an overflow of the muscular irritability to mechanical irritation into
neighbouring muscles innervated by the same nerve“ (Hudovernig, 1901), a
”defense reflex“ neither cutaneous nor periosteal (Kornilow, 1903), a
bone reflex (Lewandowsky, 1910), skin and periosteal reflex (Guillain,
1920), perichondreal reflex (Simchowicz, 1922), and finally myotatic
or muscle stretch reflex (Weingrow, 1933). It has long been known,
though, that facial muscles have no stretch reflexes (Sternberg, 1893;
Sommer, 1938), as typical muscle spindles are lacking in human facial
muscles (Kadanoff, 1956).

Based on the site stimulated, several reflexes were described in these
years: auriculo-palpebral (Kisch, 1919) cephalon-palpebral (Galant,
1926), laryngo-palpebral (Gallenga, 1930), palatal palpebral
(Imperatori, 1930), and zygomatic-palpebral reflex (Galant, 1932). Fi-
nally, Wartenberg (1944) proposed the term “orbicularis oculi reflex” to
summarize and replace the long and confusing list of these facial re-
flexes.



CO
RR

EC
TE

D
PR

OO
F

M. Kofler et al. / Clinical Neurophysiology xxx (xxxx) 1–21 3

2.2. The blink reflex to electrical trigeminal nerve stimulation

The Swedish neurologist Eric Kugelberg (1952) was the first to
record “an electrical discharge coming in two groups” recorded from the
OOc. He described the first response as “a well-synchronized volley with a
latency of about 12 ms… unilateral… through a simple arc… compatible
with a myotatic reflex” and the second response as “long-lasting asynchro-
nous discharge with a variable latency, roughly 21–40 ms… bilateral… re-
flex arc is multisynaptic… at least some part passes over the spinal tract of
the trigeminal nerve… adequate stimuli are pain and probably touch” [for
the second but not the first component]. He was also the first to perform
intraoperative electrical stimulation of the trigeminal nerve root in a
patient with trigeminal neuralgia during trigeminal rhizotomy, con-
firming Overend’s observations of an absent BR in case of anesthesia
(Overend, 1896), here due to a trigeminal nerve lesion. Subsequently,
Rushworth (1962), who first noted a possible association with the retic-
ular formation, Bender (1968) and Gandiglio and Fra (1967) largely
confirmed Kugelberg's findings.

Rushworth (1962) compared BRs following mechanical stimulation
with those to electrical, corneal (touch), auditory, and photic stimuli,
noting many similarities but also some distinct differences in health
and disease. As previously suggested (Kornilow, 1903; Böhme, 1927),
the nociceptive and protective nature of the BR elicited by various
stimulus modalities was noted by several authors (Wartenberg, 1944;
Kugelberg, 1952; Gandiglio and Fra, 1967; Shahani, 1970). Shahani
and Young (1968) noted similarities of the two-component BR to flexor
reflexes in the tibialis anterior muscle following electrical stimulation
of the foot sole. They suggested that both BR components would be of
cutaneous rather than proprioceptive origin and – based on similar
changes at different stages of anesthetic block – be elicited by the same
medium sized cutaneous fibers (Shahani, 1970). In this line, patients
with Friedreich ataxia (who lack large-diameter afferents) had a pre-
served BR in the absence of soleus H reflexes (Shahani, 1970). Shahani
and Young (1972) noted that “the second component of this reflex has
been shown to correlate with closure of the eyelids. The significance of the
first component remains to be elucidated”, a statement still valid to date.
The terminology “R1” and “R2” for the early and late components ap-
peared first in 1972 (Penders and Delwaide, 1972). The underlying BR
pathways and their (patho-)physiology and clinical utility have since
been elaborated in animals and humans by several research groups,
e.g., led by Evinger, Kimura, Ongerboer de Visser, Esteban, Berardelli,
Cruccu, Hopf, and Valls-Solé (reviewed in Hopf, 1994; Pellegrini et al.,
1995; Berardelli et al., 1999; Esteban, 1999; Aramideh and Ongerboer
de Visser, 2002; Cruccu et al., 2005; Valls-Solé, 2012, 2019; Kimura,
2013). Briefly, R1 is a pontine reflex with a latency of about 10–12 ms,
and R2 is a pontomedullary reflex appearing at a latency of some
29–37 ms (Kofler et al., 2013). At low stimulus intensities, R2 may oc-
cur substantially later, in our experience up to 50–60 ms. R1 and R2
are mediated by Aβ afferents, but R2 responses can also be triggered by
thermal and nociceptive stimuli (Romaniello et al., 2002), suggesting
that they are mediated by wide-dynamic-range (WDR) neurons of the
STN (Pellegrini et al., 1995; Ellrich and Treede, 1998) (see section 7).

“Sporadic third responses”, possibly an early account on the R3 com-
ponent of the BR, were first reported by Gandiglio and Fra (1967). The
first description of R3 was published in 1972 (Penders and Delwaide,
1972). It was long considered to be a nociceptive reflex component
(Rossi et al., 1989; D'Aleo et al., 1999; 2000); however, Ellrich and
Hopf (1996) were the first to suggest that R3 might actually be a startle
response, as the response disappears after announcing stimulation
(Rossi et al., 1993; Ellrich and Hopf, 1996) and emerges at stimulus in-
tensities clearly below pain threshold (Ellrich et al., 2001). Meincke et
al. (1999) found increased excitability of the R3 component in patients
with schizophrenia but attributed this to attentional deficits rather than
a reduced pain threshold. Later, Tellez et al. (2009) reported the preser-
vation of R3 in two patients with congenital indifference to pain. Others

confirmed the presence of R3 responses following non-nociceptive but
startling stimuli (Kofler et al., 2013; Versace et al., 2020). At present,
the R3 is considered a sporadic response, appearing at an approximate
latency of 60 to 90 ms and not always clearly separated from the R2.

Electrical stimulation of nerves other than the SON may also elicit a
BR, e.g., the infraorbital nerve, although less consistently, as already
shown by Kugelberg (1952) and later confirmed by others (Oka et al.,
1958; Gandiglio and Fra, 1967; Kimura, 1973; Hess et al., 1984; Valls-
Solé et al., 1996) (Fig. 1). Gandiglio and Fra (1967) noted that similar
two-component responses could be obtained from OOc bilaterally fol-
lowing chin-tapping and electrical stimulation of mental and upper
limb nerves (median and ulnar nerves at elbow and wrist), thus refuting
the earlier postulated myotatic nature of the first reflex component. Lin-
gual nerve stimulation also elicits an R2-like response in OOc (Pavesi et
al., 1996).

2.3. Corneal blink reflexes

As a protective reflex, the corneal reflex resembles to some degree
the BR obtained to electrical SON stimuli. The first studies applied com-
pletion of an electrical circuit triggering an oscilloscope by means of a
knobbed probe or air puff (Kugelberg, 1952), a fine camel's hair brush
moistened in isotonic saline (Magladery and Teasdall, 1961) or a small
loop of stainless steel wire (Rushworth, 1962). Other techniques em-
ployed saline jet (Thatcher and Van Allen, 1971), weak contact with a
small metal ball (Ongerboer de Visser et al., 1977), electrical stimula-
tion through a saline-soaked cotton thread (Accornero et al., 1980;
Berardelli et al., 1983; 1985a), or mechanical stimulation by applying
an air or water jet from an electrically operated pump (Accornero et al.,
1978).

The corneal reflex shows some characteristic differences from the
BR to electrical SON stimulation. Foremost, it lacks R1 (Kugelberg,
1952; Magladery and Teasdall, 1961; Rushworth, 1962; Thatcher and
Van Allen, 1971). The bilateral responses have longer latencies than R2
with large inter- but little intra-individual variability (Ongerboer de
Visser et al., 1977; Berardelli et al., 1983). Unlike for electrical SON
stimulation, there is formal evidence of response amplitude growth
with increasing intensity for air puff stimulation (Flaten and
Blumenthal, 1998). The corneal reflex shows less suppression with
paired stimuli (Cruccu et al., 1986) and less habituation (Magladery
and Teasdall, 1961; Ongerboer de Visser et al., 1977; Cruccu et al.,
1986). It is mediated by Aδ fibers in the ciliary branch of the oph-
thalmic nerve (Fig. 1).

2.4. Auditory stimulation and the blink reflex

Blinking on auditory stimulation is closely related to the startle reac-
tion. Early reports of the ‘cochleo-facial, cochleopalpebral, auriculo-
palpebral, auropalpebral or acoustico-palpebral reflex‘ (Bechterew, 1896;
Stoerk, 1921; Carrari, 1925; Galant, 1926; Veits, 1926) were followed
by detailed clinical description and cinematographic analysis of the au-
ditory startle reaction following a pistol shot (Strauss, 1929; Landis and
Hunt, 1936).

BRs to clicks had shorter latencies compared to glabella taps
(Rushworth, 1962) or photic stimuli (Yates and Brown, 1981;
Tackmann et al., 1982) and were less consistent than those to electrical
SON stimulation (Rushworth, 1962; Bender, 1968) or photic stimuli
(Yates and Brown, 1981). Normative values were also published
(Shahani and Young, 1973; Silverstein et al., 1980).

While many authors consider the auditory BR equivalent to, or a
consistent part of, the auditory startle reaction (Gogan, 1970; Fox,
1978; Esteban, 1999), others described a separate pathway for the audi-
tory BR involving inferior colliculus and midbrain reticular formation
(Buser et al., 1966; Hori et al., 1986), located more rostrally than the
auditory startle circuit (Davis et al., 1982). Such a differentiation con-
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curs with differences in the rate of habituation of the two reflexes
(Brown et al., 1991b), differential susceptibility to prepulses (Meincke
et al., 2002), separation of the two reflexes in case of delayed startles
(Brown et al., 1991a), or preservation of the auditory BR in patients
with otherwise absent startle reaction (Vidailhet et al., 1992; Kofler et
al., 2006) (Fig. 1).

2.5. Peripheral nerve stimulation: Somatosensory blink reflex

Gandiglio and Fra (1967) provided the first account of BRs elicited
by extracephalic nerve stimulation (median and ulnar nerves at elbow
and wrist). Miwa et al. (1995, 1996, 1998) elicited EMG responses in
OOc following stimulation of the median nerve at the wrist or index
finger, which could not be recorded from orbicularis oris, sternocleido-
mastoid, posterior neck, and pectoralis major muscles. As such, these
responses can be regarded a somatosensory BR rather than a so-
matosensory startle reflex (Fig. 1). Stimulation at the ankle (posterior
tibial or sural nerve) failed to elicit BRs (Miwa et al., 1995). Alvarez-
Blanco et al. (2009) obtained somatosensory blink and startle re-
sponses following median nerve stimulation, and only somatosensory
startle responses following tibial nerve stimulation, concurring with a
higher likelihood to elicit protective BRs with stimuli closer to the face
(Sambo et al., 2012b). Analogous to the differentiation of auditory
blink from auditory startle reflexes (Brown et al., 1991b), a similar dif-
ferentiation of somatosensory blink from somatosensory startle reflexes
(Brown et al., 1991a) seems plausible.

Somatosensory BRs were rarely studied apart from startle reactions
and thus from hyperekplexias. The group of Meral Kiziltan studied asso-
ciations among median nerve somatosensory and trigeminal BRs, pe-
ripheral facial palsy, and postparalytic facial syndrome after excluding
startle blinks based on response latencies (Erkol et al., 2009). The topo-
graphic utility of median nerve somatosensory versus trigeminal BRs
was documented in patients with mesencephalic or medullary vascular
lesions, revealing differential dysfunctions depending on lesion location
(Leon et al., 2011). The group of Giandomenico Iannetti contributed
several publications to the field of somatosensory BRs. They used the
so-called “hand-blink reflex” (HBR) as a tool to reveal gradual reflex
modulation as a function of the proximity between the stimulated hand
and the face (Sambo et al., 2012b; Bufacchi and Iannetti, 2018). A de-
tailed account of BR modulation in the peripersonal space follows in
section 5, the modulation of the HBR by prepulses and by self-agency
(Versace et al., 2021) is described in section 6.

2.6. The blink reflex to other sensory modalities

2.6.1. Visual / photic stimulation
Landis and Hunt were the first to report startle BRs to visual stimuli

(Landis and Hunt, 1939). BR latencies to photic stimuli were longer and
more variable as compared to electrical SON stimulation, ranging on
average from 45 to more than 75 ms (Rushworth, 1962; Bender, 1968;
Hopf et al., 1973; Lowitzsch et al., 1976; Yates and Brown, 1981;
Tackmann et al., 1982), depending on the area, intensity and wave-
length of the stimulus employed. The exact reflex pathway still remains
uncertain, however, the cerebral cortex seems to be bypassed, as reflex
blinking may remain intact in hydranencephaly (Hill et al., 1961) and
occasionally in neocortical death in humans (Keane, 1979) (Fig. 1).

2.6.2. Vestibular and kinematic stimulation
Sudden free fall may serve to elicit a vestibular startle response, in-

cluding reflex blinking (Bisdorff et al., 1994) (Fig. 1). Passive knee flex-
ion of sufficiently high angular velocity may elicit a kinematic startle
reflex, including reflex blinking amenable to modulation by prepulse
stimuli or by a concomitant motor task (Castellote et al., 2017). When
performing the video-head impulse test, 'contaminating’ blink reflexes

may be interfering with the analysis of eye movements (Mantokoudis et
al., 2015; Pleshkov et al., 2022).

2.6.3. Pain and heat stimulation
Nociceptive stimulation may evoke protective reflexes and may ini-

tiate complex protective behavior. According to Kornilow (1903) the
BR belongs to the “defense reflexes”, which was also suggested by others
(Böhme, 1927; Broser et al., 1964). Later, noxious electrical stimuli
(“train-of-four”) to the back of the hand were compared to auditory
startle blinks, revealing a similar pattern of excitation followed by inhi-
bition when delivering two stimuli closely separated, be it both audi-
tory, both electrical or mixed. In contrast, spontaneous and voluntary
blinks were not followed by such a period of suppression (Fox, 1978).
Duranti et al. (1983) used noxious electrical stimulation through wire
electrodes inserted into the vastus medialis muscle to elaborate on BR
characteristics with varying repetition rates and intensities of electrical
train stimuli. BRs, corresponding to the electrically evoked R2 and R3
components, were elicited by noxious laser stimuli applied to the oph-
thalmic nerve dermatome (Ellrich et al., 1997). The description of the
involvement of WDR neurons of the STN in the generation of the R2
component of the BR (Pellegrini et al., 1995; Ellrich et al., 1998; Ellrich
and Treede, 1998) led eventually to the development of a special type
of concentric electrode to selectively activate Aδ afferents (Kaube et al.,
2000; Katsarava et al., 2002) (Fig. 1). This technique has been mostly
applied in headaches (Coppola et al., 2007; Magis et al., 2007, 2013)
and has been found to be generally useful and reliable (von Dincklage et
al., 2010; Costa et al., 2017) (see section 7 and part 2 of this review
(Gunduz et al., submitted)).

2.7. Brief history of blink reflex modulation

Obvious influences on BRs relate to stimulus location and modality
(see above) (Soliven et al., 1988), electrical stimulus intensity (Kimura
et al., 1969; Ellrich and Treede, 1998) or contraction of the target mus-
cle, allowing for unmasking subliminal R1 and R2 responses (Leis et al.,
1993) and the appearance of contralateral R1 responses (Willer et al.,
1984; Soliven et al., 1988). Fear, anxiety, and mental tasks were re-
ported to affect BRs (Esteban, 1999). BR did not differ significantly be-
tween males and females, but R2 and R2c latencies increased with age
(Kofler et al., 2013). Attention to the blink-eliciting stimulus was re-
ported to increase R2 (Schicatano, 2016). However, other authors re-
ported the opposite: anticipation facilitates R1 and suppresses R2 (Ison
et al., 1990), whereas distraction facilitates R2 and R3 responses (Rossi
et al., 1993). Self-triggered stimulation, which combines attention, ex-
pectation, and sense of agency, also leads to R1 enhancement and R2 in-
hibition (see section 6). A facilitatory effect on R2 is seen when stimuli
are applied closer to the eye, within the so-called peripersonal space
(Sambo et al., 2012b; Versace et al., 2020), an effect that will be fully
described in section 5. Sleep affects both R1 and R2 with higher thresh-
olds in “synchronous sleep” (Ferrari and Messina, 1972) and markedly
smaller and fewer responses in sleep stages II – IV, with a relative in-
crease of excitability in REM sleep similar to stage I, but still less than
during wakefulness (Kimura and Harada, 1972). A reduction of BRs was
also observed with auditory (Silverstein et al., 1980) and photic
(Hoshina and Sakuma, 1991) stimulation applied during sleep. Reflex
elicitation during anesthesia has been used not only for intraoperative
monitoring (Deletis and Fernandez-Conejero, 2016) but has also shed
light on certain aspects of physiology that are impossible to study in
awake humans (see section 8).

Pharmacological influences on the BR and its modulation may also
aid in the localization of the drug’s site of action. E.g., serial BR record-
ings following intrathecal application of baclofen, an agonist of gamma-
amino-butyric acid (GABA) that is used to treat severe spasticity,
showed changes that paralleled the time course and degree of spasticity
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reduction, concurring with a brainstem site of action (Kumru et al.,
2011; Kumru and Kofler, 2012).

High-frequency repetitive transcranial magnetic stimulation sup-
pressed the R2 component of the BR (Kumru et al., 2019), and also
other non-invasive stimulation techniques may serve to modulate
brainstem reflex excitability, as recently reviewed by Kumru et al.
(2021).

The size of the BR can be experimentally modulated using various
maneuvers. In his 1863 monograph Reflexes of the Brain, Sechenov
(1863) (reviewed in Stuart et al., 2014) proposed an inhibitory center
in the brain and thus was among the first to postulate that reflexes can
be centrally modulated. This occurs in fact in various neurological dis-
orders, such as idiopathic Parkinson’s disease (IPD), dystonia, stroke,
multiple sclerosis, and others.

In a narrower sense, the term “modulation” may refer to the change
in a reflex response when modifying inputs coincide with the response-
eliciting stimulus in the CNS, increasing or decreasing its reflex gain,
depending upon the nature, intensity, and timing of those inputs. In this
line, various neurophysiological techniques may serve to document
modulation of the BR. A preceding conditioning stimulus of the same
characteristics as the test stimulus may be applied to the SON for the
paired-pulse paradigm. The first report of suppression of the second rel-
ative to the first R2 response following paired-pulse electrical stimula-
tion dates back to 1968 (Ferro Milone and Perfetti, 1968). The authors
observed a prolonged inhibition period in patients with corticospinal le-
sions and the opposite with basal ganglia lesions. Penders and Delwaide
(1969) were the first to elaborate on R1 excitability enhancement be-
tween ISIs of 20 – 80 ms. The clinical applicability of this methodology
took off after Kimura (1973) established the procedure of paired-pulse
testing using intervals between 100 and 1000 ms. These authors
demonstrated enhanced BR excitability recovery in patients with IPD.
Since then, other authors have used the same technique to show BR ex-
citability abnormalities in various disorders, i.e., focal, segmental, and
generalized dystonic disorders (Berardelli et al., 1985b; Tolosa et al.,
1988; Cohen et al., 1989; Nakashima et al., 1990; Valls-Solé et al.,
1991; Eekhof et al., 1996), hemifacial spasm (Valls-Sole and Tolosa,
1989; Eekhof et al., 1996), Gilles de la Tourette syndrome (Smith and
Lees, 1989), functional tic disorder (Versace et al., 2019b), and others.
Paired-pulse stimulation was also applied in other modalities, e.g.,
acoustic and visual, revealing facilitation at short ISIs (30 ms for audi-
tory, 50 ms for visual) and suppression at long intervals (250 ms), simi-
lar to trigeminal nerve stimulation (Rimpel et al., 1982). The authors
also noted cross-modal modulation in a similar time range.

A preceding stimulus of any modality may cause inhibition of the R2
component of the BR, even if it is of an intensity low enough not to elicit
an overt response by itself. The technique of using a low-intensity con-
ditioning stimulus to inhibit the BR is known as prepulse inhibition
(PPI) (see section 4). PPI was first described in the startle reflex
(Graham, 1975). The use of the BR as a test stimulus was first published
by Ison et al. (1990), who showed the disparate modulation of the BR
components, i.e., facilitation of R1 and suppression of R2 and described
cross-modal modulation, concurring with a “central effect” rather than
“on their shared endpoints”. PPI is a topic of ongoing research interest for
many authors (Garcia-Rill et al., 2019; Gunduz et al., 2019; Insola et al.,
2021; Kofler et al., 2023a). Interactions and similarities between PPI
and paired-pulse stimulation have been noted for more than 20 years
(Swerdlow et al., 2002; Coppola et al., 2007; Kofler et al., 2023a) but
have still not been entirely resolved.

A related but not extensively studied form of BR modulation is the
habituation following serial stimulation. The first account of BR habitu-
ation to auditory stimuli in humans dates back to 1937 (Oldfield,
1937). Penders and Delwaide (1971) were the first to quantify reduced
BR habituation in IPD. Dimitrijevic et al. (1972) performed the first sys-
tematic study comparing sequential with stochastic SON stimulation.
Distraction from the stimulus diminished habituation (Gregoric, 1973),

which was more pronounced in Huntington’s disease than IPD (Esteban
and Gimenez-Roldan, 1975; Caraceni et al., 1976; Ferguson et al.,
1978). BR habituation was more pronounced following mental nerve
than SON stimulation (Jääskeläinen, 1995).

The classical conditioning paradigm, based on Pavlov’s seminal ex-
periments (reviewed in (Maren, 2001) and section 3), is a special case
of BR modulation. Subjects are presented with the combination of a
warning stimulus and a BR-eliciting stimulus, either an air-puff or an
electrical SON stimulus, with fixed ISIs. After systematically repeating
this combination of stimuli for several blocks, subjects learn to produce
a new reflex response timed just to precede the presentation of the re-
flex-eliciting stimulus. Notably, for this form of learning the cerebellum
and its associated brainstem circuitry is both necessary and sufficient,
whereas the hippocampus is not necessary (Thompson, 1990). Pavlov’s
discovery implies in fact a new concept in the generation of reflexes,
which should not be considered just the mechanistic responses to stim-
uli, but the result of behavioral adaptation to environmental conditions
(Windholz, 1986). Many studies of classical conditioning have been
carried out in animals and humans (Takehara-Nishiuchi, 2018) and its
clinical application to health and disease are discussed in section 3.
Readers who are interested in the history of classical conditioning are
referred to a review by Clark (2004).

The rest of this article is devoted to describing advances acquired in
our knowledge of the physiological mechanisms implicated in some of
the techniques referred to above.

3. Blink reflex conditioning (Mark Hallett)

The BR can be used to study classical conditioning, a form of motor
learning. This type of learning depends heavily on the cerebellum, and,
therefore, it is a good way to evaluate cerebellar function. In this type of
learning, a person (or other animal) learns to make a (reflex) response
to a stimulus that ordinarily would not produce such a response. The
learning is produced over time by pairing a stimulus that does produce
the response with the one that does not ordinarily produce the response
(Fig. 2). The stimulus that is innately wired to produce the response is
called the unconditioned stimulus (US), and the stimulus that produces
the response after pairing is called the conditioned stimulus (CS). In BR
conditioning, the BR to air puff to the eye or electrical stimulation of
the SON is commonly used to produce the unconditioned response
(UR). The air puff or electrical stimulus would be the US. The CS is com-
monly an auditory tone that is subthreshold for producing an auditory
BR itself. The CS is given, then the paired US, and after many trials, a
blink is produced by the auditory tone; this would be the conditioned
response (CR).

Depending on the exact timing of the CS and US there are two differ-
ent types of conditioning. In delay conditioning, the US occurs during
the end of the CS and co-terminates with it. In trace conditioning, there
is a gap between the end of the CS and the US. Notably, the terminology
is odd since there is a delay (or interval) in trace conditioning, but not
in delay conditioning.

The BR, specifically the R2, produced by the US is a brainstem re-
flex. The pathway is the trigeminal nerve to the STN, the medullary
reticular formation, and the facial nerve (Valls-Solé, 2019). Condition-
ing of the BR depends heavily on the cerebellum, particularly lobule VI
and the interpositus nucleus (Takehara-Nishiuchi, 2018). The trigemi-
nal information in the medulla also connects with the inferior olivary
nucleus which then sends climbing fibers to the Purkinje cells of the
cerebellum. The CS activates the auditory nerve, which synapses in the
pontine nuclei, activating mossy fibers that stimulate granule cells
which send their parallel fibers to the Purkinje cells. The concordance
of the climbing fiber and parallel fiber input leads to synaptic changes
at the parallel fiber-Purkinje cell synapse that represent the learning
(Robleto et al., 2004). The output of the Purkinje cells is to the inter-
positus nucleus and then via the red nucleus to the facial nucleus which
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Fig. 2. Method of blink reflex conditioning. The horizontal axis is time with events marked. A. An unconditioned stimulus (US) produces an unconditioned re-
sponse (UR). B. If a conditioned stimulus (CS) precedes the US multiple times, if there is learning, there will be a conditioned response (CR) coming near the time
of the UR, usually just before it. B1 is trace conditioning with the CS ending before the delivery of the US (labelled CSt). B2 is delay conditioning with the CS end-
ing at the same time as the US (labelled CSd). C. After successful conditioning, delivery of the CS will produce a CR even without any US. D. If the CS is delivered
multiple times without the US, the CR will eventually be extinguished.

causes the blink. Some of the learning could also be at the Purkinje cell-
interpositus synapse.

There is also involvement of the hippocampus, and this is much
more for trace conditioning than delay conditioning, presumably be-
cause a short memory is needed due to the gap between the CS and US
in trace conditioning. Evaluating the activity of individual parvalbu-
min-positive inhibitory interneurons in the hippocampus showed that
they supported trace but not delay conditioning (Li et al., 2022). Most
of the data come from animal studies, but these results have been docu-
mented in humans as well. For example, lesion studies show the impor-
tance of the cerebellum for eyeblink conditioning (Gerwig et al., 2007).
In a fMRI study, similar involvement of the cerebellum was shown for
both delay and trace conditioning, but hippocampal involvement was
mainly for trace conditioning (Cheng et al., 2008). Using several novel
techniques, a cerebellar activity could be monitored with EEG during
conditioning of the otolith BR (Todd et al., 2021) and the maxillary
nerve stimulus BR (Todd et al., 2023). Even though the BR is a “subcor-
tical” reflex, it is under some control by the cortex. If conditioning is
done while the subject is doing a working memory task, the amount of
conditioning is less (Etemadi et al., 2023).

Once conditioned, the BR can be extinguished by giving the CS fre-
quently without any US-pairings (Fig. 2). If the same CS is conditioned a
second time after extinction, the learning is faster (Hu et al., 2015). This
implies that the original learning is not completely erased. Addition-
ally, it would be implied that the process of extinction is not just a sim-
ple reversal of the conditioning process. Experiments show that extinc-
tion is a type of inhibitory learning that is mediated by the hippocam-
pus for both delay and trace conditioning (Hu et al., 2015; Robleto et
al., 2004). Further evidence that extinction is distinct from condition-
ing is that different hippocampal cells are activated for the two
processes (Mount et al., 2021).

Emotion affects most functions in the brain including BR condition-
ing (Loi et al., 2021). Seeing pictures of sad faces will reduce delay con-
ditioning, while happy or neutral faces have no effect. Extinction, on
the other hand, will be shortened by happy and sad faces. This finding
can be taken as further evidence for the difference between condition-
ing and extinction. There is also an effect of personality with extraver-
sion leading to poorer conditioning (Eysenck, 1965; Todd et al., 2023).

BR conditioning is an excellent probe for cerebellar function. A
deficit in eyeblink conditioning in patients with cerebellar degenera-
tion was first demonstrated in 1993 (Topka et al., 1993). Patients
(n = 12) and healthy controls (n = 13) were studied with delay condi-
tioning and a marked difference was found between groups (Fig. 3).
The number of CRs grew rapidly in the controls and only minimally in
patients. Taken all together there were CRs in 48.9 % of trials in con-
trols and only 7.6 % of trials in patients. In the tone-alone trials, the
controls had CRs in 67.5 % of trials, compared with only 25.7 % in pa-
tients. In experiments, care needs to be given to be sure what blinks are
really CRs. The investigators considered only blinks < 200 ms before
the expected UR to be CRs. Blinks for the 200 ms after the start of the
CS were considered alpha blinks; that is, blinks related to the CS itself,
too remote from the expected time of a true CR. A similar result with
delay conditioning was published in 1993 by another group in 7 pa-
tients with a mixture of degenerations, stroke, and cerebellar tumor
post-resection (Daum et al., 1993).

There is considerable evidence for cerebellar dysfunction in patients
with essential tremor. Two groups found delay BR conditioning to be
abnormal (Kronenbuerger et al., 2007; Shill et al., 2009). In one of the
studies (Kronenbuerger et al., 2007), some of the patients had mild
cerebellar signs and their results did not differ from the other patients.

There have been two studies of delay BR conditioning in IPD. Both
in the on– and off-state conditioning appears fully normal (Daum et al.,
1996; Sommer et al., 1999). Studies are also normal in isolated dystonia
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Fig. 3. Delay conditioning in a control subject and a patient with cerebellar degeneration. Timing of the stimuli is noted in the lower left, CS is the conditioned
stimulus and US is the unconditioned stimulus. The paradigm has 6 blocks with 10 trials per block, 8 with CS-US pairing, 1 with CS alone, and 1 with US alone,
with a 10 second intertrial interval. The CS was a tone lasting 400 ms. Traces are rectified electromyographic activity in orbicularis oculi muscle. The first 6 traces
are examples of responses to the pair of CS-US stimuli in the respective blocks, and the seventh trace is the CS, tone-alone, trace from the sixth block. In blocks 1
and 2 for the control subject and in all the blocks of the patient, the only response seen is the unconditioned response (UR). Conditioned responses (CR) can be
seen preceding the UR in blocks 3 to 6 and the tone-alone block of the control subject. Only blinks in the interval between the vertical dotted lines are considered
CR. Early blinks after delivery of the CS are called alpha blinks and are indicated with *. From Topka et al. (1993) with permission.

(Sadnicka et al., 2022). BR conditioning is abnormal, however, in pro-
gressive supranuclear palsy (Sommer et al., 2001) and multiple system
atrophy (von Lewinski et al., 2013) (Fig. 4). Hence, BR conditioning
might be a good test to differentiate IPD from other parkinsonisms.

In Alzheimer disease, BR conditioning is reduced presumably be-
cause of hippocampal involvement. This was first reported in 1990 in
20 patients compared with 20 healthy age-matched controls (Woodruff-
Pak et al., 1990). The US was an air puff, and the CS was a 400 ms tone
in a delay paradigm. There were 90 trials, 80 with paired CS-US and 10
with CS alone. There was a big difference in conditioning. Using a crite-
rion of 25 % CRs, 17 normal controls were above criterion while only 1
of the patients was; this gave a sensitivity of 95 % and specificity of
65 %. A second study of 15 patients compared with 17 healthy controls
was published the next year with a similar study design. In a delay para-
digm, the US was an air puff, and the CS was a 500 ms tone. There were
70 trials in blocks of 10 with the first trial CS alone and the other trials

with paired CS-US. Using a cutoff of 20 % CRs, the investigators ob-
tained a sensitivity of 80 % and specificity of 80 %. In a comparison of
Alzheimer disease with vascular dementia, more abnormality was seen
in Alzheimer disease presumably due to the hippocampal pathology
(Woodruff-Pak et al., 1996). Recognizing that trace conditioning should
be a more sensitive test than delay conditioning, a study was done com-
paring 750 ms trace to 400 ms delay paradigms (Woodruff-Pak and
Papka, 1996). The 750 ms interval was thought to be optimal based on
animal experiments where trace conditioning was clearly superior to
delay conditioning. Surprisingly however, delay conditioning was more
sensitive. There is no clear explanation of this finding, and the issue de-
serves more study.

In conclusion, BR conditioning is a good simple model to study mo-
tor learning with correlative studies in animals and humans. It appears
to have useful clinical applications identifying, with specificity, condi-

Fig. 4. Blink reflex conditioning in idiopathic Parkinson’s disease (IPD), healthy controls, multiple system atrophy (MSA), and progressive supranuclear palsy (PSP).
Delay conditioning on the left and trace conditioning on the right. The graphs show percent of conditioned responses (CR) in each of 7 blocks. The unconditioned
stimulus (US) is a shock to the supraorbital nerve, the conditioned stimulus (CS) was a 400 ms tone. In delay conditioning the tone ended at the time of the shock; in
trace conditioning there was a gap of 600 ms between the end of the tone and the shock. There were 6 blocks with pairing of US and CS in trials 1 to 9, an US only
in trial 10, and a CS alone in trial 11. In the 7th block, there were 11 trials of the CS only (that would begin an extinction process). Note that conditioning is normal
in IPD, but markedly diminished in MSA and PSP in both types of conditioning. From von Lewinski et al. (2013) with permission.
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tions with cerebellar or hippocampal pathology. Currently, it is not uti-
lized as much as it could be for clinical and research purposes.

4. Gating and prepulse effects. Physiology and techniques (Josep
Valls-Solé)

PPI is usually regarded as an expression of gating. While this is cer-
tainly consistent with present physiological knowledge (Garcia-Rill et
al., 2019), there are important differences between PPI and gating.
Both PPI and sensory gating relate to the same physiological phenome-
non implicated in the control of sensory inputs, however, reflex re-
sponses are required for the expression of PPI but not for sensory gat-
ing. Also for the expression of PPI, the relevant parameter governing
the modulation of subsequent responses remains the afferent sensory
volley (Kofler et al., 2023b). PPI can in fact be considered a special case
of sensory gating.

While PPI is a phenomenological effect implying responses in the
motor system, gating is a physiological mechanism implicated in the
control of sensory inputs.

4.1. Prepulse inhibition and reflex responses

PPI is expressed on reflexes. The largest amount of work has been
done with either the startle reflex or the BR, although a few authors
have reported PPI in other reflexes, such as the masseteric inhibitory re-
flex (Gomez-Wong and Valls-Solé, 1996) or autonomic responses (Eder
et al., 2009). The startle reflex is the test of choice in animal experimen-
tation studies, whereas the BR is often used in humans, where a discrete
recording from the OOc is sufficient for most studies. Although blinking
to some stimulation modalities may be a local manifestation of the star-
tle reaction, the BR elicited by electrical stimulation of the SON has its
own circuitry, the main distinctive feature being the presence of the R1
in the ipsilateral side of the stimulus. This early response (10–12 ms),
which may also be occasionally seen with infraorbital nerve stimulation
(Aramideh and Ongerboer de Visser, 2002), results from activation of
the facial motoneurons after an oligosynaptic relay in the PSN and thus
it is not conveyed through the reticular formation as it is the case with
the R2 and R2c or the OOc responses to other stimulation modalities.
R2 and R2c responses follow the trigemino-facial chain of interneurons
lying in the pontomedullary reticular formation and are, therefore, sus-
ceptible to modulation through all inputs reaching the reticular forma-
tion within a certain preceding time period, i.e., prepulses. In fact, such
modulation is likely to occur constantly in the human nervous system,
where reflex response elicitation results from the combined effect of
stimulus salience above background noise and prepulse modulation
from other environmental inputs. A main influence on prepulse modu-
latory effects originates in the pedunculopontine tegmental nucleus
(Garcia-Rill et al., 2019). Although the exact configuration of the ‘pre-
pulse circuit’ is still unclear, Mamiya et al. (2005) found that the output

from cholinergic neurons of the pedunculopontine nucleus caused hy-
perpolarization of neurons in the nucleus reticularis pontis caudalis,
limiting in this way the expression of incoming inputs.

While the reflex responses for which PPI may be demonstrated are
essentially limited to the BR and the startle reflex, a diversity of stimu-
lus modalities may play the role of either prepulses or reflex-eliciting
stimuli (Fig. 5). A prepulse, by definition, precedes the response-
eliciting stimulus and the time interval in between is essential for the ef-
fect. The peak of the inhibitory effect is 100 ms for an electrical stimu-
lus to digital nerves, it occurs slightly sooner for a mechanical tap to the
hand, understandably later for laser or contact-heat stimuli, and shows
almost no delay for intracranial electrical stimulation, in accordance
with the distance between the stimulation site and the structures medi-
ating PPI (Valls-Solé et al., 2000; Costa et al., 2006; Correa et al., 2019;
Insola et al., 2021). The long interval needed with contact-heat stimuli
to reach the brainstem was used as an advantage by Correa et al. (2019)
to examine the effects that a prepulse stimulus might have on percep-
tion of the sensory volley. The rationale of such a study was to search
for neurophysiological signs of gating using PPI methods: since PPI is
caused by gating of the afferent volley, there should be an effect of pre-
pulses on perception. To this end, the authors used Libet’s clock (Libet,
2004), asking participating volunteers to report the time at which they
felt the stimuli. The onset times of such conscious perception in base-
line trials were 353.4 ms (SD = 52.7 ms) for the SON stimulus and
733.6 ms (SD = 75.6 ms) for the thermoalgesic stimulus (note the
longer time needed for perception of the thermoalgesic stimulus due to
conduction in poorly myelinated peripheral nerve fibers and through
the spinothalamic tract). Therefore, possible effects on perception
should take place when the SON stimulus is delivered more than
380 ms after the thermoalgesic stimulus. In fact, what the authors
found was a period of significant bidirectional changes in perception
(shortening in the perception of the SON stimulus and delay in the per-
ception of the thermoalgesic stimulus) between 450 and 700 ms. This
result suggests that, with the methods employed by Correa et al.
(2019), the effect of PPI on perception occurred in both directions, al-
though in real life, the effect may depend on the specific focus of atten-
tion.

The works of Inui et al. (2012, 2018, 2022) deserve special mention.
These authors used the term PPI to report on the effect of a low-
intensity sound prepulse on the cortical responses to suprathreshold au-
ditory stimuli. Although such observation could be used to widen the
scope of prepulse effects to include non-reflex responses, it fits closer to
the idea of sensory gating (see below) than that of prepulse, even
though no analysis of perception was reported by Inui et al. (2012).

A variety of factors may influence the degree of PPI, such as gender
(Kofler et al., 2013), body posture (Versace et al., 2019a), stimulation
site (Versace et al., 2019a), cognition (Versace et al., 2021), and the
subject’s emotional state such as attention (Dawson et al., 1993) or fear
(Gunduz et al., 2019). The information gathered in these studies should

Fig. 5. Simplified scheme of prepulse inhibition A prepulse stimulus of any of the modalities listed under ‘prepulse’ precedes a pulse stimulus, either a startling sound
or a supraorbital nerve electrical stimulus, by a specific time lapse. The volley generated by the prepulse reaches the brainstem where it causes inhibition of the re-
sponses expected from the pulse stimulus, i.e., the startle reflex or the blink reflex (BR). The inhibition shows usually in a significant size reduction of either the star-
tle reflex or the BR, depending on the pulse stimulus modality. The prepulse volley may also generate a response by itself, such as a BR, depending on the prepulse
stimulus intensity. Similar mechanisms may apply in part also to circuits mentioned in Sections 5 and 6.
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be useful to strengthen its clinical utility (see part 2 of this review
(Gunduz et al., submitted).

4.2. On the relationship between prepulse inhibition and gating

The term ‘gating’ is employed in various areas of neurophysiology,
including ion channels in axonal membranes, afferent inputs in their
way towards conscious appraisal, sensory interference with attention
focusing, and others. The usage of the term more akin to PPI is that of
filtering out potentially disturbing inputs carrying irrelevant informa-
tion for the ongoing signal processing. The interference between two
sensory volleys in their way to the central nervous system (CNS) occurs
at various levels of the neuraxis, starting at the dorsal horn (Cohen and
Starr, 1985; Stachowski and Dougherty, 2021), and being already sub-
stantial with direct recordings from thalamic nuclei (Costa et al., 2008).

However, a physiologically and clinically more interesting form of
gating relates to inhibiting afferent input during movement. When we
execute an action, the sensory inputs generated from the joints, mus-
cles, and skin participating in the movement are actively attenuated. A
comparator system between these sensory signals and those predicted
by the efference copy helps shape the final movement outcome. When
the result of the comparator is zero, sensory attenuation occurs and a
sense of being ourselves the agents of the movement, i.e., sense of
agency, is generated (Haggard, 2017; Blakemore et al., 2000). This
mechanism is likely altered in patients with functional movement disor-
ders, whose probable deficit in sensory attenuation may lead to absent
recognition of themselves as movement agents. Abnormal movement-
related gating has been demonstrated already by recording the so-
matosensory evoked potentials (SEPs) at onset of self-paced movements
(Parees et al., 2014; Macerollo et al., 2015). But the PPI of the BR may
also be an important tool for expanding our knowledge on the patho-
physiology of the defective sensory attenuation of patients with func-
tional movement disorders (Hanzlikova et al., 2019) (see part 2 of this
review (Gunduz et al., submitted).

The neurophysiological study of gating and prepulse may contribute
to deepen our knowledge of the pathophysiological mechanisms of
many neurological disorders. Gating and prepulse effects are windows
to CNS circuits devoted to control the inflow of sensory signals, the
main source of information for us to interact with our surroundings.

5. The blink reflex and peripersonal space (Giandomenico
Iannetti)

A bilateral reflex response in OOc can be elicited by electrical stimu-
lation of nerves different from the trigeminal nerve. The responses ob-
tained to upper and lower limb nerve stimulation show characteristics
similar to the R2 of the trigeminal BR (Valls-Solé et al., 1994; Miwa et
al., 1995, 1998; Alvarez-Blanco et al., 2009). As detailed in section 2.5,
the response elicited by median nerve stimulation (the HBR), is larger
than the one obtained with stimuli applied to the lower limb. This dif-
ference is usually explained with the shorter conduction distance and
the consequently more synchronized afferent volley generated by stim-
uli applied to the upper limb (Alvarez-Blanco et al., 2009). However,
considering the protective value of blinking (Sherrington, 1906), and
the modulation of subcortical reflexes by higher centers to maximize
fitness (Sechenov, 1863), an alternative explanation for the larger mag-
nitude of the BR elicited by median nerve stimulation is the greater
proximity of the upper limb to the face compared to the lower limb. It
makes intuitive sense that stimuli closer to the face have a stronger po-
tential to harm the eye and elicit a larger BR.

5.1. Hand-blink reflex magnitude depends on top-down cortical modulation

The size of the BR may indicate how the nervous system implicitly
estimates the potential to harm of the eliciting stimulus (Sambo et al.,

2012a, 2012b; Bufacchi et al., 2016) (see also section 5.4). Among the
many factors determining the potential to harm of environmental stim-
uli, the spatial proximity of stimuli to the eye is straightforward to mod-
ulate, especially using the HBR, because a change of the position of the
stimulated hand in egocentric coordinates does not alter the intensity of
the sensory input eliciting the BR. In contrast, applying, e.g., acoustic
stimuli to elicit an auditory BR would present the major drawback of
different stimulus intensities when the stimulus is in different spatial lo-
cations. A seminal experiment that has been now reproduced by several
research groups, demonstrated an HBR double in magnitude when the
stimulated hand was close to the face rather than far away (Fig. 6A)
(Sambo et al., 2012b; Sambo and Iannetti, 2013). Importantly, this en-
hancement occurs irrespectively of whether the proximity of the hand
to the face was altered by changing the position of the arm or by rotat-
ing the head while keeping the arm position constant. Thus, the HBR
enhancement is not due to changes in peripheral input (Sambo et al.,
2012b) nor to the effort necessary to keep the hand close to the face
(but see (Bufacchi et al., 2019). These results indicate a remarkably fine
top-down modulation of the HBR by higher-order cortical areas. This
modulation could take place at different levels of the reflex circuit:
presynaptic disinhibition of primary Aβ neurons, specific facilitation of
the HBR interneurons in the lower medulla, or general facilitation of fa-
cial motoneurons. There is empirical evidence that neither the N20
component of median nerve SEPs nor the BR elicited by electrical SON
stimulation are affected by hand position (Sambo et al., 2012b). These
observations rule out a disinhibition of the afferent lemniscal pathways
(i.e., in the cuneate nucleus, before Aβ afferents from the hand enter the
brainstem circuits subserving the HBR) or the facial motoneurons, and
provide instead compelling evidence that the brainstem circuits mediat-
ing the HBR undergo tonic and selective top-down modulation from
higher order cortical areas.

5.2. A peripersonal map of blink reflex magnitude

While most studies investigated the HBR magnitude as a function of
two stimulus positions (typically ‘far’ and ‘near’ the face), when a
larger number of stimulus positions are explored it becomes possible to
use geometrical models to derive fine-grained topographical maps of
BR strength (Fig. 6B). This modelling approach allows testing a number
of physiological assumptions on why the BR increases as a function of
hand position. Specifically, when the hand position covers large por-
tions of space, the HBR magnitude reflects the probability of the face
being hit by a threat. These maps show that the HBR increases monoto-
nically with the proximity between the stimulus and the face (Bufacchi
et al., 2016). Importantly, while HBR strength is symmetrical on the ax-
ial plane, it is elongated asymmetrically along the rostro-caudal axis,
with stronger HBR elicited by stimuli occurring above than below the
face (Fig. 6B). Furthermore, HBR modulation when systematically al-
tering body posture, i.e., with participants being upright, supine, and
lying sideways, suggests that the nervous system adjusts the strength of
the BR taking gravity into account when estimating the probability of
being hit by a threat (Bufacchi and Iannetti, 2016). Indeed, the vertical
asymmetry of the HBR magnitude field is invariant to body posture:
stimuli coming from above in earth-centered coordinates always result
in stronger HBR compared to stimuli at the same distance from the face
but coming from below. Thus, the brain takes gravitational cues to au-
tomatically update threat value in an adaptive mechanism that ac-
counts for the simple fact that objects fall down.

5.3. What does the hand-blink reflex enhancement truly reflect?

The clear dependence of HBR modulation on proximity between the
stimulus and the face has induced many authors to consider the HBR
modulation an index of how the nervous system represents the space
surrounding the body (“peripersonal space”). However, there is ample
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Fig. 6. The magnitude of the blink reflex elicited by median nerve stimulation (hand-blink reflex, HBR) is modulated by the proximity between the stimulated hand
and the face. A: the top waveforms are the rectified group average HBR for the hand position”far” (blue) and “near” (red). The bottom waveform expresses the
ANOVA F-value for each time point, in the significant time windows (P < 0.05). The right panel shows a consistent effect across participants (single-subject HBR
magnitudes are expressed as area under the curve, AUC) (modified from Sambo et al. (2012b)). B: geometric modelling of HBR strength as a function of stimulus po-
sition. Plots are a combined description of the experimental data with the best-fitting geometric model. Measured HBR data are represented as concentric circles lo-
cated where the measurements were taken. Background color represents the HBR magnitude predicted by the best-fitting geometric model. Line graphs at the side of
each color plot show HBR magnitudes along each axis, together with the best-fitting geometric model (blue line). HBR magnitude increases monotonically with the
proximity between the stimulus and the face, and it is symmetrical on the axial plane, but asymmetrical along the rostro-caudal axis, with stronger HBR elicited by
stimuli occurring above than below the face (from Bufacchi et al. (2016)).

evidence that the HBR is strongly influenced also by factors other than
proximity, and in many instances the HBR is largely modulated even
when the stimulus position with respect to the face remains constant.
One example is the above-mentioned effect of gravity: the magnitude of
the HBR elicited by a stimulus at the same Euclidean distance from the
face changes when the subject posture is altered (Bufacchi and Iannetti,
2016). Several other non-spatial factors affect the HBR magnitude: the
presence of a screen between the stimulated hand and the eye (Sambo
et al., 2012a), changes in the probability or control of stimulus occur-
rence (Sambo et al., 2012a; Versace et al., 2020) – see also section 6),
whether the stimulus is approaching or receding (Wallwork et al., 2016;
Bisio et al., 2017), and the presence of other moving and static environ-
mental objects (Fossataro et al., 2016; Somervail et al., 2019). It is
therefore incorrect to relate HBR magnitude to proximity and periper-
sonal space, as we and others have done in the past (Sambo and
Iannetti, 2013; Wallwork et al., 2017; Bisio et al., 2017). This unjusti-
fied primacy of proximity shows the issues consequent to interpreting
HBR modulations in spatial terms: given that many factors other than

proximity can cause the observation that the HBR magnitude is in-
creased, interpreting such HBR increases as reflecting changes in how
the nervous system represents stimulus location in egocentric coordi-
nates is likely incorrect. For a more exhaustive discussion on the topic,
we refer to Bufacchi and Iannetti (2018, 2021).

5.4. Hand-blink reflex modulation reflects the potential of the stimulus to
harm the eye rather than its spatial configuration

Thus, HBR magnitude fields do not reflect representations of stimu-
lus configuration in face-centered coordinates. Rather, they are better
understood as mappings onto behavior. Specifically, HBR magnitude
represents a case of a class of neural and behavioral responses that re-
flect the value of actions aiming to create or avoid contact between ob-
jects and the body (for an extensive discussion on the topic and on the
different definitions given (and often interchangeably used) to the term
“peripersonal space” see Bufacchi and Iannetti (2018, 2021)).
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The BR is a prototypical contact action, as it aims to avoid contact
between a dangerous stimulus and the eye through the interposition of
the eyelid; thus, it is behaviorally useful that its magnitude depends on
the likelihood that a stimulus hits the eye, a likelihood that, in turn, de-
pends on the proximity between the stimulus and the face (although by
no means only on the proximity) (Sambo et al., 2012a; Bufacchi et al.,
2016). The action value perspective (i.e., that the HBR magnitude re-
flects the output of a neural estimate of how necessary it is to blink in a
given condition (Bufacchi and Iannetti, 2018, 2021)) parsimoniously
explains why factors other than proximity affect HBR magnitude. This
is in striking contrast to previous interpretations, which often consid-
ered non-proximity effects as interesting exceptions to the spatial prox-
imity rule – but nevertheless interpreted in spatial terms, as indicating,
for example, that “far becomes near” and that the “space representation
is dynamically shaped” by the contingent factors affecting the HBR
(Bisio et al., 2017). Finally, the action value perspective allows specu-
lating on the cortical structures exerting the top-down modulation of
HBR-specific circuitry in the brainstem. Parieto-premotor circuits de-
scribe the relevance of potential actions within the interactive behavior
framework (Cisek and Kalaska, 2010), and precisely in these areas there
are bimodal visuo-tactile neurons with visual body-part centered recep-
tive fields (Clery et al., 2015). Also, in addition to the HBR, many be-
haviors whose magnitude displays a body-part centered field have been
linked to neural activity occurring within this loop (Brozzoli et al.,
2014). It is therefore likely that the parietal and premotor cortices are
the cortical sites where the value of potential actions, including the
HBR, are specified.

6. Self-triggering of blink reflexes (Viviana Versace)

The excitability of brainstem circuitries mediating defensive blink-
ing in response to abrupt sensory inputs is continuously modulated in
part by the estimated threat that these inputs pose to the eyes (see
section 5). In fitting with the idea that control over a stimulus reduces
its threat value and self-induced sensory perturbations render reflexive
protective eye-closure less necessary, few authors have shown that
when BRs are elicited by self-stimulation, the R2 response is reduced at
the same time that the R1 response is potentiated (Ison et al., 1990;
Meincke et al., 1992, 2003; Leis et al., 1993; Versace et al., 2020,
2023). However, the exact physiological mechanisms that underlie
these effects are still unclear.

The effect of self-inflicted unpleasant stimuli has rarely been studied
in the context of brainstem reflexes other than the BR to SON stimula-
tion, with some examples for auditory startle reactions (Kawachi et al.,
2014), and somatosensory BR following high-intensity median nerve
stimulation (the HBR) (Versace et al., 2021). Some spinal reflexes are
similarly depressed by self-stimulation, e.g., the cutaneous flexor reflex
response (Young, 1973), the stretch reflexes (Rothwell et al., 1986),
and cutaneous reflexes evoked during human walking (Baken et al.,
2006; Hoogkamer et al., 2015).

Volitional activity, sensory inputs, and motivational and emotional
factors may all influence reflexes (Sechenov, 1863) by gaining access to
polysensory integrative brainstem centers, where they may modify the
excitability of reflex pathways (Fig. 5).

Both self-produced sensations and self-generated motor actions
(e.g., those resulting in delivery of self-directed stimuli) are similarly
“attenuated”. Based on an internal cognitively mediated forward
model, the act of self-eliciting a stimulus brings about an efference copy
of the motor command. This efference copy is thought to reflect the pre-
dicted sensation of the self-initiated motor act, which may not only lead
to sensory attenuation but also to inhibition of reflex responses.

Not all findings related to sensory attenuation, however, can be ex-
plained by forward models. Hence, another theoretical framework, i.e.,
predictive processing, has more recently been developed (Kiepe et al.,
2021). This model suggests sensory attenuation to be a result of atten-

tion orienting based on predictions that are not necessarily dependent
upon motor behavior. Predictive processing states that we constantly
make use of prior information, either self- or externally generated, in
order to create predictions about upcoming changes in sensory input in
the form of a generative model. In this framework, only the predictabil-
ity of a stimulus determines its potential to elicit sensory attenuation.
This theory is again unable to explain all the evidence, leaving room for
hybrid models, which combine the efference-based forward model with
a global predictive mechanism.

Several studies have shown that self-administration of a moderately
painful stimulus, relative to the administration of the same stimulus by
external agents, reduces the perceived intensity and unpleasantness
(Wang et al., 2011; Muller, 2012) and modulates neural activity in the
anterior cingulate cortex (Mohr et al., 2005; Wang et al., 2011), pri-
mary somatosensory cortex (Helmchen et al., 2006; Wang et al., 2011),
posterior insula and prefrontal cortex (Mohr et al., 2008), all areas re-
lated to saliency detection (Mouraux and Iannetti, 2009; Mouraux et
al., 2011). Such a reduction in perceived unpleasantness was also ob-
served for self-induced BRs (Meincke et al., 1992; Versace et al., 2023).

Interestingly, self-stimulation and observation of stimulus triggering
suppressed the R2 component, despite the stimulation probe being
close to the person’s face, a condition known to facilitate R2 (Versace et
al., 2020). Indeed, the perception of a threat near the face potentiates
R2 despite unchanged properties of the SON stimuli, while self-
stimulation can overrule this effect.

A peri-liminal (barely perceptible) sensory stimulus, which does not
produce a response by itself, delivered prior to the reflex-eliciting SON-
stimulus at appropriate ISIs facilitates R1 and dramatically suppresses
R2 (Rossi and Scarpini, 1992) (see section 4, Fig. 5). The apparently
similar modulation of R1 and R2 induced by a prepulse and by self-
stimulation suggests the possibility of a common mechanism (Versace
et al., 2020). However, certain disparities led to refute this assumption
(Versace et al., 2023): recent experiments demonstrated that prepulse
effects are evident in a time window ranging from 40 to at least 500 ms
ISIs with a maximum effect at ISI 100 ms between prepulse and SON
stimulus, concurring with a time-locked mechanism of presynaptic in-
hibition at the brainstem level. In contrast, R2 suppression and R1 facil-
itation due to self-stimulation of SON already occur in a 2-s period be-
fore the act of self-triggering (Versace et al., 2023), suggesting a tonic
“cognitive” tuning of the excitability of brainstem circuits.

While a top-down facilitatory influence of the “readiness to act” on
the excitability of the neurons in the pontine facial nucleus (responsible
for R1) is certainly not easy to explain from a physiological point of
view, it seems easier to explain a top-down inhibitory influence on the
pontomedullary interneurons (responsible for R2) that regulate the
magnitude of protective blinking, according to ongoing needs.

The excitability of the respective interneurons in the brainstem
reticular formation is crucial for the size of the BR to SON stimulation,
or of the startle eyeblink, as they can rapidly tune their excitability de-
pending on descendent projections from higher-order areas (Sambo et
al., 2012b; Valls-Solé, 2012; Kawachi et al., 2014). The higher-order
control mediating “readiness to act” and the “sense of agency” may
share corticofugal modulatory influence on the brainstem neural cir-
cuits responsible for protective eye closure. A concrete example is the
difference in blinking when administering eye drops oneself versus hav-
ing someone else doing it. “Knowing that you are not posing a threat to
your eyes” does not require to close them promptly.

7. The blink reflex and pain (Jens Ellrich)

7.1. Functional anatomy and physiology of the trigeminal system

Trigeminal afferent nerve fibers project via the trigeminal ganglion
to the mesencephalic nucleus, the PSN, the interstitial nucleus of the
spinal trigeminal tract, and the STN in the brainstem (Clara, 1942;
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Olszewski, 1950; Phelan and Falls, 1989; Shults, 1992; Nieuwenhuys et
al., 2008). The STN, extending from the pons to the upper cervical
spinal cord, is divided into subnucleus oralis, interpolaris, and caudalis
(Olszewski, 1950; Shults, 1992). Based upon the responsiveness to me-
chanical stimulation applied to the orofacial skin, secondary sensory
neurons within the subnuclei of the STN are classified in low-threshold
mechanoreceptive (LTM), WDR, and nociceptive-specific (NS) neurons
(Willis, 1985; Sessle et al., 1986; Ellrich and Messlinger, 1999).
Whereas LTM and WDR neurons respond to light tactile stimuli via Aβ
fiber afferents, only WDR neurons increase discharge rates when stimu-
lus intensity becomes noxious and involves afferent input from Aδ and
C fiber afferents. NS neurons do not respond to innocuous tactile input
but only to noxious stimuli via nociceptive afferent nerve fibers. Noci-
ceptive neurons, i.e., WDR and NS, were localized in the interstitial nu-
cleus of the spinal trigeminal tract and in all subnuclei of the STN indi-
cating their involvement in trigeminal nociception and pain processing
(Hayashi et al., 1984; Sessle et al., 1986; Hayashi and Tabata, 1989;
Dallel et al., 1990). Studies in patients with circumscribed brainstem le-
sions confirmed that nociceptive processing within the trigeminal sys-
tem involves these brainstem nuclei (Ongerboer de Visser and Kuypers,
1978; Kimura et al., 1994; Hopf, 1994; Valls-Solé et al., 1996; Jerath
and Kimura, 2019). Reflex pattern alterations in patients with solitary
and circumscribed brainstem lesions enabled inferring which brainstem
nuclei are part of the BR arcs, allowing for topodiagnosis in clinical neu-
rophysiology. The interneurons are located in the PSN for the R1 and in
the medullary STN for the R2 components of the electrically elicited BR
(Fig. 7). The location of reflex interneurons was confirmed by reflex
studies in patients with small circumscribed brainstem lesions (Hopf,
1994; Cruccu et al., 2005). A unilateral ischemic lesion in the dorsolat-
eral medulla, the so-called Wallenberg syndrome, caused an abnormal
R2 in more than 90 % of patients, while the R1 remained unchanged.
Stimulation on the healthy side elicited a normal reflex pattern
(Kimura, 2013; Valls-Solé et al., 1996).

Fig. 7. Neuronal network model of the blink reflex (BR). The principal sensory
nucleus (PSN) mediates the R1 component, and the spinal trigeminal nucleus
(STN) mediates the R2 component of the BR. Trigeminal non-nociceptive and
thick-myelinated Aβ afferents project on low-threshold mechanoreceptive
(LTM) neurons of the PSN generating the R1 reflex of the orbicularis oculi
muscle (OOc) via motor neurons of the facial nerve (VII). Trigeminal tactile Aβ
and nociceptive Aδ afferents converge onto common wide-dynamic-range
(WDR) interneurons of the STN generating the R2 reflex via motor neurons of
the VII. Noxious stimulation to remote body sites such as the extremities, acti-
vate multireceptive neurons of the subnucleus reticularis dorsalis (SRD) in-
hibiting WDR neurons and, hence, the R2 reflex responses. Additionally, the
R2 reflex may be evoked or modulated by Aβ fiber input on LTM neurons of
the STN or noxious input from Aδ afferents on nociceptive specific neurons
(NS) of the STN.

7.2. Afferent inputs and thresholds for elicitation of the blink reflex

R1 and R2 can be elicited by phasic innocuous mechanical or electri-
cal stimuli indicating that these components are mediated by thick-
myelinated Aβ afferents (Kimura, 2013; Ellrich and Treede, 1998). Av-
erage electrical thresholds with stimulation of the SON at the supraor-
bital foramen via two identical surface electrodes utilizing square wave
pulses with a duration of 200 µs in healthy volunteers were reported to
be 2.2 mA for detection (touch sensation), 2.4 mA for R2, and 5.3 mA
for R1. These thresholds are far below the reported pricking pain
threshold of 16.2 mA indicating the non-nociceptive origin of R1 and
R2 evoked by this common type of electrical stimulation (Ellrich and
Treede, 1998). Aβ fiber afferents project to LTM and WDR neurons.
Thus, the R1 is mediated by afferent input from Aβ fibers to LTM neu-
rons of the PSN that does not contain any WDR neurons (Fig. 7). Conse-
quently, Aβ afferents may project to LTM and/or WDR neurons of the
STN generating the R2 reflex (Fig. 7). If WDR neurons of the STN are in-
volved in the R2, noxious stimulation should be able to evoke the reflex
as well.

Selective activation of trigeminal Aδ fiber nociceptors of the fore-
head by heat pulses of an infrared laser causing a pricking painful sen-
sation elicits a BR (Ellrich et al., 1997; Romaniello et al., 2002). This
noxious phasic stimulus evokes a bilateral BR with an onset latency of
approximately 70 ms following trigeminal stimulation. Considering the
nociceptor activation time of about 40 ms (transduction), the onset la-
tencies of the electrically evoked R2 with innocuous intensity and the
laser-evoked BR correspond very well. Notably, this component is the
earliest one, no component corresponding to the electrically evoked R1
is elicited by noxious heat (Ellrich et al., 1997; Romaniello et al., 2002).

The BR can be evoked by electrical rectangular pulses applied by a
custom-made concentric electrode to the forehead (Kaube et al., 2000).
This electrode consists of a small central cathode (diameter Ø 1 mm)
and a large external ring anode (inner Ø 8 mm, outer Ø 24 mm). With
stimulus intensities below 1 mA but high current density, this electrode
allows preferential activation of cutaneous nociceptive Aδ-fibers
(Bromm and Meier, 1984; Kaube et al., 2000). This kind of noxious
electrical stimulation of supraorbital nociceptive afferents evokes R2
reflexes with latencies of approximately 42 ms. Local anesthesia of the
forehead skin is able to suppress the BR confirming its mediation by no-
ciceptive skin afferents (Kaube et al., 2000).

Elicitation of R2 by both noxious stimulation techniques confirms
the involvement of nociceptive afferent input in the R2 reflex arc. Dif-
ferent reflex arcs are conceivable (Fig. 7): (1) Discrete afferent reflex
arc: electrically or mechanically activated low-threshold afferent input
via Aβ fibers projects onto LTM neurons and thermally or electrically
evoked nociceptive input projects via Aδ afferents onto NS neurons; In
this case, the non-nociceptive and the nociceptive R2 are mediated by
different interneurons. (2) Both innocuous and noxious inputs converge
onto common WDR interneurons, i.e., both reflexes share the same in-
terneurons. If afferent input from thick-myelinated, non-nociceptive Aβ
fibers and thin-myelinated, nociceptive Aδ fibers converge on the same
WDR interneurons, homotopic subthreshold noxious stimulation should
facilitate the R2 reflex elicited by low-intensity electrical stimuli corre-
sponding to the phenomenon of spatial summation.

7.3. Blink reflex modulation by noxious stimuli

When a conditioning noxious heat pulse, which does not evoke any
BR, is homotopically applied to the left forehead preceding by 75 ms an
innocuous BR-eliciting electrical stimulus to the SON, the R1 remains
unchanged while the R2 is facilitated by about 30 % (Ellrich et al.,
1998). These results suggest that both afferent inputs, the electrically
evoked Aβ input and the heat evoked Aδ input, facilitate the R2 reflex
by spatial summation (Fig. 7). These data confirm the mediation of the
R2 by WDR neurons and of the R1 by LTM neurons. The simultaneous
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occurrence of R1 and R2 components may help to differentiate non-
nociceptive from nociceptive processes within the trigeminal system.

If WDR neurons significantly contribute to the signal processing of
R2 after weak electrical stimulation, the BR should be inhibited by acti-
vation of the system of diffuse noxious inhibitory controls. Nociceptive
afferent input from anywhere on the body activates nociceptive neu-
rons in the subnucleus reticularis dorsalis (SRD) of the brainstem caus-
ing inhibition of WDR neurons in the spinal cord and the trigeminal sys-
tem (Villanueva et al., 1996; Ellrich and Messlinger, 1999; Le Bars,
2002). Thus, if the R2 is mediated by WDR neurons, it should be sup-
pressed by remote painful stimuli via diffuse noxious inhibitory con-
trols. Actually, the BR elicited by weak electrical stimuli is modulated
by noxious conditioning heat applied to the extremities: the R2 de-
creased while the R1 remains unchanged (Ellrich and Treede, 1998).
This inhibition of the R2 by remote noxious heat indicates not only an
involvement of WDR neurons in the generation of the Aβ fiber-
mediated R2 but also a convergence of Aβ and Aδ afferents onto com-
mon WDR neurons within the medullary STN (Fig. 7). Constancy of R1
seems to confirm the mediation of this response by pontine LTM neu-
rons of the PSN. Nociceptive R2 BRs elicited by intra-epidermal or su-
perficial electrical stimulation were inhibited by remote cold or heat
stimulation of the hand or the forearm, respectively, in a similar man-
ner (Drummond et al., 2018; Kinukawa et al., 2021).

In summary, the “traditional” electrically evoked BR following SON
stimulation is mediated by trigeminal Aβ fibers that project to LTM and
WDR neurons of the PSN and the STN. There is evidence, however, that
nociceptive neurons are involved in the BR as well. The R2, but not the
R1, is elicited by selective or highly preferential nociceptive afferent in-
put from infrared laser pulses or high current density electrical stimula-
tion. R2 facilitation by homotopic noxious input and R2 inhibition by
remote noxious heat indicate considerable involvement of multirecep-
tive WDR neurons of the STN. Trigeminal nociception can therefore be
investigated by applying this brainstem reflex. According to the investi-
gation of spinal nociception by cutaneomuscular reflexes, pathophysio-
logical mechanisms of central sensitization, hyperalgesia, allodynia and
referred pain can be investigated in the trigeminal system by using the
BR (Kofler and Halder, 2014; Pillai et al., 2020; Khan, 2021; Thoma et
al., 2022). An experimental study in humans addressed the conver-
gence of meningeal and facial input on the STN, probably a condition
for referred pain, and demonstrated in healthy volunteers the facilita-
tion of the R2 by raising intracranial pressure (Ellrich et al., 1999). The
R2 qualifies for exploring nociception and pain in the trigeminal system
and thus may be an appropriate model to test analgesic drug effects on
trigeminal nociception.

8. The blink reflex and other brainstem reflexes under general
anesthesia (Maria J. Téllez)

Virtually all functional circuits of the CNS are subject to synaptic
modulation and plasticity by pharmacologic agents like anesthetic
drugs. Remarkably, how and where anesthetic drugs disrupt synaptic
networks remains to be determined. The classic view predicates that
anesthetic drugs bind to protein receptors extensively distributed in the
CNS, inducing global synaptic suppression. A recent proposition sug-
gests that dedicated axonal pathways and specific brainstem locations
may convey a suppressive signal to remote parts of the CNS
(Sukhotinsky et al., 2016). The BR has been for a long time used to iden-
tify the transition from patient responsiveness to unresponsiveness after
induction of general anesthesia and to assess the depth of anesthesia
maintenance. The BR, elicited with a single electrical stimulus over the
SON, exhibits a dose-dependent relationship with infusion pumps and
volatile anesthetic agents, gradually reducing the BR R1 and R2 ampli-
tudes until abolishing both responses in a few minutes (Marelli and
Hillel, 1989; Mourisse et al., 2004).

Nevertheless, several methodologies and anesthetic routines have
been successfully developed to elicit and sustain brainstem reflexes un-
der general anesthesia for intraoperative monitoring guidance in com-
plex surgeries. Recording brainstem reflexes under general anesthesia
have significantly advanced how various surgical procedures are moni-
tored. It is now possible to monitor cranial nerves' sensory and motor
functions, pathways, and nuclei within the brainstem. In some cases,
the elicitation of a brainstem reflex requires facilitation by stimulating
sensory afferents with a short train of electrical stimuli. In other cases,
we hypothesize that the effect of anesthetic drugs may facilitate the
elicitation of brainstem reflexes. There is evidence that propofol-
induced unconsciousness disrupts the signaling between cortical and
brainstem structures, thereby modifying the salience network and its
connectivity with the brainstem (Guldenmund et al., 2013).

This section summarizes the methodologies and behavior of brain-
stem reflexes elicited under general anesthesia, each presenting diverse
susceptibility to anesthetic modulation.

8.1. General anesthesia

Propofol, etomidate, and barbiturates are the most common agents
to induce general anesthesia. After induction, the patient loses con-
sciousness and the oculocephalic and corneal reflexes at approximately
10 to 30 seconds. As anesthesia induction occurs, the patient presents
muscle atonia and apnea, suggesting that these GABAergic agents dis-
rupt synapses at the brainstem level where arousal and respiratory cen-
ters are located. A decrement in cortical activity follows, and the flow of
communication between the brainstem, subcortical and cortical path-
ways is also interrupted (Brown et al., 2010, 2011; Feldman and Del
Negro, 2006).

The primary goals of general anesthesia maintenance are providing
an adequate level of unconsciousness and antinociception to the pa-
tient.

Maintaining general anesthesia with volatile halogenated anesthet-
ics (isoflurane, desflurane, and sevoflurane) profoundly affects brain-
stem reflexes (Møller and Jannetta, 1986). For instance, at a median
alveolar concentration > 1 (Eger, 1974), the BR and the laryngeal ad-
ductor reflex (LAR) are not elicitable. Additionally, there is a dramatic
delay in the reappearance of the reflexes, despite the end-tidal anes-
thetic concentrations returning to zero by mass spectroscopy (Marelli
and Hillel, 1989). At a median alveolar concentration < 1, both re-
flexes have proven to be elicitable, presenting smaller amplitude
(Deletis et al., 2009; Sinclair et al., 2017a). The mean or median alveo-
lar concentration is not given in specific units since it represents a ratio
or proportion of the concentration of anesthetic gas to other factors
(Eger, 1974).

Total intravenous anesthesia (TIVA) is a more appropriate prepara-
tion for maintaining anesthesia if brainstem reflexes have to be moni-
tored during surgery. TIVA incorporates an infusion pump with propo-
fol (100–300 µg/kg/min) and opioids (remifentanil at 0.1–0.3 µg/kg/
min, fentanyl at 1–2 µg/kg/hr, or sufentanil at 0.1–0.3 µg/kg/hr) ad-
justed throughout surgery according to the patient's anesthesia depth.

8.2. The blink reflex elicited under general anesthesia

A single electrical stimulus applied to the SON does not elicit the BR in
fully anesthetized humans, except if the trigeminal or facial nerves are
hyperexcitable or the patient is only slightly anesthetized (Møller and
Jannetta, 1986; Sindou et al., 1994; Fernandez-Conejero et al., 2012).
Instead, a short train of stimuli (3–9 pulses, 2 ms ISI) is needed to over-
come the inhibitory action of anesthetics (Deletis et al., 2009).

The short train of stimuli was initially introduced to elicit motor-
evoked potentials in anesthetized humans (Taniguchi et al., 1993). The
repetitive discharge of electrical current applied to cortical neurons is
known to increase spinal cord excitability (Phillips and Porter, 1964).
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In analogy, building-up of facial motoneuron excitability is likely effec-
tive for BR elicitation under general anesthesia.

The elicitability of the BR varies from 80 to 90 % of the patients
when a subject is fully anesthetized (Deletis et al., 2009; Ying et al.,
2021; Aydinlar et al., 2022). Unlike awake subjects, only the oligosy-
naptic R1 component of the BR is present (Fig. 8A). During surgery, the
BR can help detect impending injuries upon the trigeminal and facial
nerves and upper-mid pons. BR changes during posterior fossa surgery
strongly correlate with the status of facial nerve motor function

(Aydinlar et al., 2022) and trigeminal nerve sensory function (Ying et
al., 2021) at postoperative and third-month evaluations.

8.3. Differences between the blink reflex and other brainstem reflexes
obtained during general anesthesia

Other brainstem reflexes elicited under general anesthesia include
the LAR, the H reflex of the masseter muscle, and the trigeminal-
hypoglossal reflex (THR).

Fig. 8. A. Blink reflex (BR) elicited in a patient under total intravenous anesthesia (TIVA, two trials shown). The BR was elicited by applying a short train of 9 elec-
trical pulses (2 ms inter-stimulus-interval, at 36 mA intensity) to the supraorbital nerve, ipsilateral to the recorded side (Deletis et al., 2009). B. Laryngeal adductor
reflex (LAR) elicited in a patient under TIVA (two trials shown). The LAR was elicited by applying a short train of 3 electrical pulses (1–2 ms inter-stimulus-interval,
at 9 mA intensity) applied to the laryngeal mucosa contralateral to the recording side (Sinclair et al., 2017b). C. Masseter H reflex elicited in a patient under TIVA.
The first trial was elicited by stimulating the third branch of the trigeminal nerve (under the zygomatic arc) with a single pulse at a slightly higher intensity than the
second to show M/H and isolated H, respectively (Ulkatan et al., 2017). D. Trigeminal-hypoglossal reflex (THR) elicited in a patient under TIVA (two trials shown).
The THR was elicited by stimulating the third branch of the trigeminal nerve (under the zygomatic arc) with a short train of 3 electrical pulses at 30 mA.
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The LAR is a vagal, life-sustaining protective reflex that shields the
lower airway from inhaled foreign bodies (Sasaki et al., 2003; Sinclair
et al., 2017b). The LAR is evoked by applying an electrical stimulus in
the supraglottic mucosa, utilizing surface electrodes placed on an EMG-
endotracheal tube (routinely used intra-operatively by endocrine neck
surgeons) (Sinclair et al., 2017b). It can be recorded bilaterally from vo-
cal cord adductor muscles (thyroarytenoid and lateral cricoarytenoid),
showing short-latency R1 and long-latency R2 components, which, in
contrast to the BR, are both bilateral regardless of the stimulated side
(Fig. 8B). These observations have been made both, in awake subjects
(Tellez et al., 2018) and in patients under general anesthesia (Sinclair et
al., 2017a, 2018).

Unlike the BR R1, which to date has no known physiological func-
tion, a recent study provided evidence that the bilateral LAR R1 re-
sponse is the electrical event that initiates vocal cord adduction (Tellez
et al., 2021). In contrast, eyelid closure in humans predominantly relies
on the BR R2 component. Thus, the BR and the LAR diverge from each
other at this critical point. To effectively maintain visual surveillance of
the surroundings, the human brain can supersede the response of clos-
ing the eyes when circumstances demand it. Hence, the properties of
the bilateral, long-latency BR R2 component are highly modulated by
supratentorial influences and conscious state.

Conversely, the larynx must have a short-latency, reflex mechanism
that can override any other voluntary action to protect the human air-
way. In this line, conditioning protocols in awake humans have shown
that the short-latency LAR R1 overrides phonation, respiratory, and
swallowing tasks. On the contrary, the LAR R2 response is highly modu-
lated and decreases during multitasking, such as swallowing, respira-
tion, and phonation (Barkmeier et al., 2000; Kearney et al., 2005;
Henriquez et al., 2007; Ludlow, 2011). Even more, the ipsi- and con-
tralateral LAR R1 components can be elicited at all anesthesia depths if
TIVA is used in 100 % of patients. These findings could have significant
implications in patients with a high risk of aspiration, undergoing seda-
tion or anesthesia, provided the LAR R1 response contributes to airway
protection by initiating vocal cord closure.

The performance of the BR and the LAR diverges under general
anesthesia (Ambalavanar et al., 2002). A likely explanation relates to
the pyramidal projections to the STN that facilitate the sensory trans-
mission of the BR through the brainstem circuits (Kimura, 1974; Chase
et al., 1980; Berardelli et al., 1983). Anesthetic agents conceivably im-
pair these facilitatory pyramidal projections, making the BR less elic-
itable than the LAR under general anesthesia. The lateral tegmental
field of the reticular formation carries the polysynaptic R2 component
of the BR (Kimura and Lyon, 1972; Ongerboer de Visser and Kuypers,
1978; Aramideh et al., 1997) and likely the R2 component of the LAR
(Sessle, 1973; Tanaka et al., 1995; Ambalavanar et al., 2004; Adachi et
al., 2010) to the corresponding motor nuclei (facial and ambiguous, re-
spectively). However, the BR R2 is abolished in deeply anesthetized
subjects in contrast to the LAR R2 response. N-methyl-D-aspartate
(NMDA) receptors, essential targets of intravenous anesthetics that en-
hance GABA and reduce NMDA activation, may play a role in this dis-
tinct presentation of the R2 between BR and LAR. NMDA receptors are
involved in respiratory reflexes in the brainstem, modulating the
medullary respiratory network (Pierrefiche et al., 1994; Haji et al.,
1998). Classically conditioned eyeblink responses (Kishimoto et al.,
1997) and elicitation of the LAR R2 response depend on NMDA receptor
activation (Ambalavanar et al., 2004).

In addition to the BR, two other trigeminal-elicited brainstem re-
flexes have been investigated under general anesthesia. The homony-
mous and heteronymous H reflex in the masseter and temporalis mus-
cles, respectively, have been recorded in patients under TIVA (Ulkatan
et al., 2017) (Fig. 8C), despite the lack of classic facilitation by the teeth
clenching. The THR or jaw-tongue reflexes coordinate the tongue's posi-
tion in the mouth relative to jaw movement. Rarely documented in
awake subjects, they were successfully recorded under general anesthe-

sia (TIVA) with an elicitability of 82.1 % of the patients (Mirallave
Pescador et al., 2022) (Fig. 8D). Interestingly, these authors elicited the
THR in four patients by SON stimulation (V1 branch) while simultane-
ously evoking the trigeminal BR, probably due to trigeminal hyperex-
citability secondary to offending vascular structures over the nerve. In a
more appealing proposition, we hypothesize that a modified salience
network (Guldenmund et al., 2013), deprived of higher neuron control
input due to anesthetic drugs, may uncover how integrating sensory in-
formation across several inputs produces excitatory and inhibitory re-
sponses across different effectors through the reticular formation. Addi-
tional neurophysiological evidence of a link between trigeminal and hy-
poglossal networks in humans under anesthesia was provided by an-
other group (Szelenyi and Fava, 2022). Trigeminal-hypoglossal connec-
tions are known to exist following two possible pathways: a monosy-
naptic connection between neurons of the mesencephalic trigeminal
nucleus and hypoglossal motoneurons (Zhang et al., 2001, 2003) and
through a polysynaptic network relaying on pontomedullary structures
of the reticular formation (Tomioka et al., 1999; Zhang et al., 2003;
Dong et al., 2005; Luo et al., 2006; Urban, 2015).

In summary, the ability to elicit and monitor brainstem reflexes dur-
ing surgery has practical implications for improving neurosurgical out-
comes. It also opens new opportunities for understanding the underly-
ing physiology of these brainstem reflexes. The disruption of signaling
between modulating supranuclear structures and the brainstem by
anesthetic drugs may facilitate the examination of brainstem reflexes
rarely recorded in awake subjects.

9. Concluding remarks and outlook

BR testing has been part of the neurophysiological armamentarium
for over 50 years. Its topodiagnostic value is well established. Being a
brainstem reflex, however, puts the BR in a strategically challenging po-
sition: on the one hand, the BR serves to reflect some aspects of brain-
stem functioning, but on the other hand, its circuitry is also subject to a
multitude of afferent and efferent influences. Understanding the ways
and mechanisms of BR modulation is the basis to understand human
brainstem physiology and may serve to open new diagnostic avenues in
clinical neurophysiology. Some of these aspects have already arrived in,
or are on the verge of, clinical practice and are described and discussed
in part 2 of this review (Gunduz et al., submitted).
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